• Medientyp: E-Book
  • Titel: Estimating DSGE Models : Recent Advances and Future Challenges
  • Beteiligte: Fernández-Villaverde, Jesús [Verfasser:in]; Guerrón-Quintana, Pablo A. [Sonstige Person, Familie und Körperschaft]
  • Körperschaft: National Bureau of Economic Research
  • Erschienen: Cambridge, Mass: National Bureau of Economic Research, 2020
  • Erschienen in: NBER working paper series ; no. w27715
  • Umfang: 1 Online-Ressource; illustrations (black and white)
  • Sprache: Englisch
  • DOI: 10.3386/w27715
  • Identifikator:
  • Reproduktionsnotiz: Hardcopy version available to institutional subscribers
  • Entstehung:
  • Anmerkungen: System requirements: Adobe [Acrobat] Reader required for PDF files
    Mode of access: World Wide Web
  • Beschreibung: We review the current state of the estimation of DSGE models. After introducing a general framework for dealing with DSGE models, the state-space representation, we discuss how to evaluate moments or the likelihood function implied by such a structure. We discuss, in varying degrees of detail, recent advances in the field, such as the tempered particle filter, approximated Bayesian computation, the Hamiltonian Monte Carlo, variational inference, and machine learning, methods that show much promise, but that have not been fully explored yet by the DSGE community. We conclude by outlining three future challenges for this line of research
  • Zugangsstatus: Freier Zugang