• Medientyp: E-Book; Hochschulschrift
  • Titel: Aprotische Medien zur elektrochemischen Abscheidung von Silicium als neuartiges Anodenmaterial für Lithium-Ionen-Batterien
  • Beteiligte: Link, Steffen [Verfasser:in]; Bund, Andreas [Akademische:r Betreuer:in]; Hertel, Tobias [Akademische:r Betreuer:in]; Ritter, Uwe [Akademische:r Betreuer:in]
  • Körperschaft: Technische Universität Ilmenau
  • Erschienen: Ilmenau: Universitätsbibliothek, Oktober 2020
  • Umfang: 1 Online-Ressource (xii, 95, XLIX Seiten); Diagramme, Illustrationen
  • Sprache: Deutsch
  • Identifikator:
  • Schlagwörter: Galvanische Abscheidung > Lithium-Ionen-Akkumulator > Ionische Flüssigkeit > Sulfolan
  • Entstehung:
  • Hochschulschrift: Dissertation, Technische Universität Ilmenau, 2021
  • Anmerkungen: Tag der Verteidigung: 31.03.2021
  • Beschreibung: Die elektrochemische Abscheidung von Silicium ist eine aussichtsreiche Alternative zu den derzeitigen energieintensiven Herstellungsverfahren. Bisher ist der Reduktionsprozess jedoch kaum verstanden und die Schichten weisen starke Kohlenstoff- und Sauerstoffverunreinigungen auf. Für den Einsatz als hochkapazitive Anoden in Lithium-Ionen-Batterien ist deshalb die Anpassung der Schichteigenschaften und chemischen Zusammensetzung erforderlich. Diese Parameter werden durch das verwendete Substrat, die Stabilität des Elektrolyten und dem angelegten Potential beeinflusst. Daher wird in dieser Arbeit die Reduktion von SiCl4 in diversen aprotischen Medien, u.a. 1-Butyl-1-methylpyrrolidinium Bis(trifluoromethylsulfonyl)imid ([BMP][TFSI]) und Sulfolan (SL), untersucht. Als Hauptanalysewerkzeug dient dabei die elektrochemische Quarzkristallmikrowaage mit Dissipationsüberwachung. Die morphologische und chemische Charakterisierung erfolgt mittels Rasterelektronenmikroskopie bzw. Röntgenphotoelektronenspektroskopie. Die Ergebnisse zeigen unabhängig von Substrat und Potential eine starke Zersetzung von [BMP][TFSI] während der Abscheidung. Die Menge an Si(0) unterscheidet sich jedoch auf den einzelnen Substraten und reicht von 18,1 at.% (Glaskohlenstoff - GC) bis 7,5 at.% (Ni). Im Gegensatz dazu wird die Reduktion von SiCl4 auf den Metallelektroden in SL bei niedrigen Potentialen kaum durch die Nebenreaktionen beeinträchtigt, wodurch doppelt so hohe Anteile an Si(0) in den Schichten erreicht werden. Auf GC verhindert die Zersetzung von SL eine erfolgreiche Abscheidung von Si. In beiden Elektrolyten nehmen Rauheit und Viskoelastizität des Si mit zunehmender Abscheidezeit (t>1h) zu. Das (De-)Lithiierungsverhalten der Schichten wird mittels galvanostatischer Zyklisierung in EC/DMC (1:1, v/v) - LiPF6 Elektrolyten bei verschiedenen spezifischen Strömen untersucht. Die Daten zeigen eine schnelle Abnahme der Kapazität aufgrund der hohen Volumenexpansion während der Legierungsbildung. Durch Verwendung eines porösen Kupfer-Stromabnehmers konnten die Zyklenstabilität, Ratenfähigkeit und Coulomb-Effizienz von aus SL abgeschiedenem Si jedoch deutlich verbessert werden. Selbst nach 1200 Zyklen besitzt das Material noch eine Kapazität von ca. 1,5 Ah/g. Darüber hinaus konnten keine Risse in der Schicht festgestellt werden, was die hohe Stabilität der Elektrode belegt.
  • Zugangsstatus: Freier Zugang