• Medientyp: E-Artikel
  • Titel: Robust Bayesian insurance premium in a collective risk model with distorted priors under the generalised Bregman loss
  • Beteiligte: Boratyńska, Agata [Verfasser:in]
  • Erschienen: 2021
  • Erschienen in: Statistics in transition ; 22(2021), 3 vom: Sept., Seite 123-140
  • Sprache: Englisch
  • DOI: 10.21307/stattrans-2021-030
  • Identifikator:
  • Schlagwörter: classes of priors ; posterior regret ; distortion function ; Bregman loss ; insurance premium ; Aufsatz in Zeitschrift
  • Entstehung:
  • Anmerkungen:
  • Beschreibung: The article presents a collective risk model for the insurance claims. The objective is to estimate a premium, which is defined as a functional specified up to unknown parameters. For this purpose, the Bayesian methodology, which combines the prior knowledge about certain unknown parameters with the knowledge in the form of a random sample, has been adopted. The generalised Bregman loss function is considered. In effect, the results can be applied to numerous loss functions, including the square-error, LINEX, weighted squareerror, Brown, entropy loss. Some uncertainty about a prior is assumed by a distorted band class of priors. The range of collective and Bayes premiums is calculated and posterior regret Γ-minimax premium as a robust procedure has been implemented. Two examples are provided to illustrate the issues considered - the first one with an unknown parameter of the Poisson distribution, and the second one with unknown parameters of distributions of the number and severity of claims.
  • Zugangsstatus: Freier Zugang
  • Rechte-/Nutzungshinweise: Namensnennung (CC BY)