• Medientyp: E-Book
  • Titel: Rank-1/2 : A Simple Way to Improve the Ols Estimation of Tail Exponents
  • Beteiligte: Ibragimov, Rustam [Verfasser:in]; Gabaix, Xavier [Sonstige Person, Familie und Körperschaft]
  • Erschienen: [S.l.]: SSRN, [2007]
  • Erschienen in: NBER Working Paper ; No. t0342
  • Umfang: 1 Online-Ressource (37 p)
  • Sprache: Englisch
  • Entstehung:
  • Anmerkungen: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments September 2007 erstellt
  • Beschreibung: Despite the availability of more sophisticated methods, a popular way to estimate a Pareto exponent is still to run an OLS regression: log(Rank)=a-b log(Size), and take b as an estimate of the Pareto exponent. The reason for this popularity is arguably the simplicity and robustness of this method. Unfortunately, this procedure is strongly biased in small samples. We provide a simple practical remedy for this bias, and propose that, if one wants to use an OLS regression, one should use the Rank-1/2, and run log(Rank-1/2)=a-b log(Size). The shift of 1/2 is optimal, and reduces the bias to a leading order. The standard error on the Pareto exponent zeta is not the OLS standard error, but is asymptotically (2/n)^(1/2) zeta. Numerical results demonstrate the advantage of the proposed approach over the standard OLS estimation procedures and indicate that it performs well under dependent heavy-tailed processes exhibiting deviations from power laws. The estimation procedures considered are illustrated using an empirical application to Zipf's law for the U.S. city size distribution
  • Zugangsstatus: Freier Zugang