• Medientyp: E-Book
  • Titel: Catch Me If You Can : Improving the Scope and Accuracy of Fraud Prediction
  • Beteiligte: Chakrabarty, Bidisha [Verfasser:in]; Moulton, Pamela C. [Sonstige Person, Familie und Körperschaft]; Pugachev, Leonid [Sonstige Person, Familie und Körperschaft]; Wang, Xu (Frank) [Sonstige Person, Familie und Körperschaft]
  • Erschienen: [S.l.]: SSRN, [2020]
  • Umfang: 1 Online-Ressource (51 p)
  • Sprache: Englisch
  • DOI: 10.2139/ssrn.3352667
  • Identifikator:
  • Schlagwörter: fraud prediction ; Benford’s Law ; F-score
  • Entstehung:
  • Anmerkungen: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments February 10, 2020 erstellt
  • Beschreibung: We propose a parsimonious metric – the Adjusted Benford score (AB-score) – to improve the detection of financial misstatements. Based on Benford's Law, which predicts the leading-digit distribution of naturally occurring numbers, the AB-score estimates a firm-year's likelihood of financial statement manipulation, compared to its peers and controlling for time-series trends. The AB-score's biggest advantage is coverage: It can be computed for about 60% more firm-years than the leading accounting-based metric (the F-score) without sacrificing accuracy. Notably, it can be computed for financial firms, which are often excluded from financial misconduct research due to data availability issues. For firm-years with all data available, combining the AB-score and F-score variables into one model yields higher accuracy in predicting misstatements. Our metric performs well out-of-sample as well as in-sample, across different misstatement databases, and for a set of notorious financial frauds. It should be especially useful to regulators and industry professionals
  • Zugangsstatus: Freier Zugang