• Medientyp: E-Book
  • Titel: Ensemble Learning Applied to Quant Equity : Gradient Boosting in a Multi-Factor Framework
  • Beteiligte: Guida, Tony [Verfasser:in]; Coqueret, Guillaume [Sonstige Person, Familie und Körperschaft]
  • Erschienen: [S.l.]: SSRN, [2018]
  • Erschienen in: Big Data and Machine Learning in Quantitative Investment, Wiley finance series. 2018
  • Umfang: 1 Online-Ressource (3 p)
  • Sprache: Englisch
  • Entstehung:
  • Anmerkungen: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments February 28, 2018 erstellt
  • Beschreibung: In this chapter, we apply a popular Machine Learning approach (extreme gradient boosted trees) to build enhanced diversified equity portfolios. A simple naïve equally-weighted portfolio of US stocks based on a boosted tree-based signal generates on average an excess return of 3.1% per annum, compared to a simple multifactor portfolio. We demonstrate that using boosted trees on a large number of features give an average error rate of 20% for predicting the 12-month sector neutral outperformance of a stock. In addition, enhancing a simple multi-factor signal with an ML-boosted signal proves to add value on a risk-return basis without altering the factor exposure of the traditional multi-factor portfolio
  • Zugangsstatus: Freier Zugang