• Medientyp: E-Book
  • Titel: Simulation Optimization Through Regression or Kriging Metamodels
  • Beteiligte: Kleijnen, Jack P. C. [Verfasser:in]
  • Erschienen: [S.l.]: SSRN, [2017]
  • Erschienen in: CentER Discussion Paper Series ; No. 2017-026
  • Umfang: 1 Online-Ressource (21 p)
  • Sprache: Englisch
  • DOI: 10.2139/ssrn.2969730
  • Identifikator:
  • Entstehung:
  • Anmerkungen: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments May 16, 2017 erstellt
  • Beschreibung: This chapter surveys two methods for the optimization of real-world systems that are modelled through simulation. These methods use either linear regression metamodels, or Kriging (Gaussian processes). The metamodel type guides the design of the experiment; this design fixes the input combinations of the simulation model. These regression models uses a sequence of local first-order and second-order polynomials known as response surface methodology (RSM). Kriging models are global, but are re-estimated through sequential designs. "Robust" optimization may use RSM or Kriging, and accounts for uncertainty in simulation inputs
  • Zugangsstatus: Freier Zugang