• Medientyp: E-Book
  • Titel: Multilevel Richardson-Romberg Extrapolation
  • Beteiligte: Lemaire, Vincent [Verfasser:in]; Pagès, Gilles [Sonstige Person, Familie und Körperschaft]
  • Erschienen: [S.l.]: SSRN, [2014]
  • Umfang: 1 Online-Ressource (38 p)
  • Sprache: Englisch
  • DOI: 10.2139/ssrn.2539114
  • Identifikator:
  • Entstehung:
  • Anmerkungen: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments December 16, 2014 erstellt
  • Beschreibung: We propose and analyze a Multilevel Richardson-Romberg ($MLRR$) estimator which combines the higher order bias cancellation of the Multistep Richardson-Romberg ($MSRR$) method introduced in [Pag07] and the variance control resulting from the stratification in the Multilevel Monte Carlo ($MLMC$) method (see [Hei01, Gil08]). Thus we show that in standard frameworks like discretization schemes of diffusion processes an assigned quadratic error $\varepsilon$ can be obtained with our ($MLRR$) estimator with a global complexity of $\log(1/\varepsilon)/\varepsilon^2$ instead of $(\log(1/\varepsilon))^2/\varepsilon^2$ with the standard ($MLMC$) method, at least when the weak error $\mathbf{E}[Y_h]-\mathbf{E}[Y_0]$ of the biased implemented estimator $Y_h$ can be expanded at any order in $h$. We analyze and compare these estimators on two numerical problems: the classical vanilla and exotic option pricing by Monte Carlo simulation and the less classical Nested Monte Carlo simulation
  • Zugangsstatus: Freier Zugang