Monfort, Alain
[Verfasser:in]
;
Renne, Jean-Paul
[Sonstige Person, Familie und Körperschaft];
Roussellet, Guillaume
[Sonstige Person, Familie und Körperschaft]
Anmerkungen:
Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments November 1, 2014 erstellt
Beschreibung:
We propose a new filtering and smoothing technique for non-linear state-space models. Observed variables are quadratic functions of latent factors following a Gaussian VAR. Stacking the vector of factors with its vectorized outer-product, we form an augmented state vector whose first two conditional moments are known in closed-form. We also provide analytical formulae for the unconditional moments of this augmented vector. Our new quadratic Kalman filter (Qkf) exploits these properties to formulate fast and simple filtering and smoothing algorithms. A first simulation study emphasizes that the Qkf outperforms the extended and unscented approaches in the filtering exercise showing up to 70% RMSEs improvement of filtered values. Second, we provide evidence that Qkf-based maximum-likelihood estimates of model parameters always possess lower bias or lower RMSEs that the alternative estimators