• Medientyp: E-Book
  • Titel: A Quadratic Kalman Filter
  • Beteiligte: Monfort, Alain [Verfasser:in]; Renne, Jean-Paul [Sonstige Person, Familie und Körperschaft]; Roussellet, Guillaume [Sonstige Person, Familie und Körperschaft]
  • Erschienen: [S.l.]: SSRN, [2014]
  • Umfang: 1 Online-Ressource (39 p)
  • Sprache: Englisch
  • DOI: 10.2139/ssrn.2369788
  • Identifikator:
  • Entstehung:
  • Anmerkungen: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments November 1, 2014 erstellt
  • Beschreibung: We propose a new filtering and smoothing technique for non-linear state-space models. Observed variables are quadratic functions of latent factors following a Gaussian VAR. Stacking the vector of factors with its vectorized outer-product, we form an augmented state vector whose first two conditional moments are known in closed-form. We also provide analytical formulae for the unconditional moments of this augmented vector. Our new quadratic Kalman filter (Qkf) exploits these properties to formulate fast and simple filtering and smoothing algorithms. A first simulation study emphasizes that the Qkf outperforms the extended and unscented approaches in the filtering exercise showing up to 70% RMSEs improvement of filtered values. Second, we provide evidence that Qkf-based maximum-likelihood estimates of model parameters always possess lower bias or lower RMSEs that the alternative estimators
  • Zugangsstatus: Freier Zugang