• Medientyp: E-Book
  • Titel: Nonparametric Estimation and Parametric Calibration of Time-Varying Coefficient Realized Volatility Models
  • Beteiligte: Chen, Xiangjin Bruce [Verfasser:in]; Gao, Jiti [Sonstige Person, Familie und Körperschaft]; Li, Degui [Sonstige Person, Familie und Körperschaft]; Silvapulle, Param [Sonstige Person, Familie und Körperschaft]
  • Erschienen: [S.l.]: SSRN, [2013]
  • Umfang: 1 Online-Ressource (55 p)
  • Sprache: Englisch
  • DOI: 10.2139/ssrn.2320312
  • Identifikator:
  • Entstehung:
  • Anmerkungen: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments September 1, 2013 erstellt
  • Beschreibung: This paper introduces a new specification for the heterogeneous autoregressive (HAR) model for the realized volatility of S&P500 index returns. In this new model, the coefficients of the HAR are allowed to be time-varying with unknown functional forms. We propose a local linear method for estimating this TVC-HAR model as well as a bootstrap method for constructing confidence intervals for the time varying coefficient functions. In addition, the estimated nonparametric TVC-HAR was calibrated by fitting parametric polynomial/trigonometric functions by minimising the L2-type criterion. In hypotheses testings of the calibrated and the simple parametric HAR models against the nonparametric TVC-HAR model, the test statistic constructed based on the generalised likelihood ratio method augmented with bootstrap method provides evidence in favour of the nonparametric TVC-HAR model. More importantly, using the fluctuation test developed by Giacomini and Rossi (2010) for forecast evaluation, the nonparametric TVC-HAR model was found to consistently outperform the calibrated TVC-HAR and the simple HAR models in out-of-sample forecasting
  • Zugangsstatus: Freier Zugang