> Detailanzeige
Borowiec, Justyna
[Verfasser:in]
;
Schober, Andreas
[Akademische:r Betreuer:in];
Ritter, Uwe
[Akademische:r Betreuer:in];
Boccaccini, Aldo R.
[Akademische:r Betreuer:in]
Technische Universität Ilmenau
Fabrication and characterization of microstructured scaffolds for complex 3D cell cultures
Teilen
Literatur-
verwaltung
Direktlink
Zur
Merkliste
Lösche von
Merkliste
Per Email teilen
Auf Twitter teilen
Auf Facebook teilen
Per Whatsapp teilen
- Medientyp: E-Book; Hochschulschrift
- Titel: Fabrication and characterization of microstructured scaffolds for complex 3D cell cultures
- Beteiligte: Borowiec, Justyna [Verfasser:in]; Schober, Andreas [Akademische:r Betreuer:in]; Ritter, Uwe [Akademische:r Betreuer:in]; Boccaccini, Aldo R. [Akademische:r Betreuer:in]
- Körperschaft: Technische Universität Ilmenau
-
Erschienen:
Ilmenau: Universitätsbibliothek, [2021?]
- Umfang: 1 Online-Ressource (XII, 140 Seiten); Diagramme, Illustrationen
- Sprache: Englisch
- DOI: 10.22032/dbt.50717
- Identifikator:
-
RVK-Notation:
WX 6600 : Allgemeines
-
Schlagwörter:
Mikrostruktur
>
3D-Zellkultur
>
Oberflächenstruktur
>
Scaffold
- Entstehung:
-
Hochschulschrift:
Dissertation, Technische Universität Ilmenau, 2021
-
Anmerkungen:
Tag der Verteidigung: 23.06.2021
- Beschreibung: In einem natürlichen Gewebe wird das zelluläre Verhalten durch Stimuli der Mikroumgebung reguliert. Verschiedene chemische, mechanische und physikalische Reize befinden sich in einem lokalen Milieu und versorgen die Zellen mit einem biologischen Kontext. Im Vergleich zur in vivo Situation, zeigen Standard 2D in vitro Zellkulturmodelle viele Unterschiede in der zellulären Mikroumgebung und können infolgedessen eine Veränderung der Zellantwort verursachen. Die Schaffung einer physiologisch realistischeren Umgebung auf künstlichem Substrat ist ein Schlüsselfaktor für die Entwicklung zuverlässiger Plattformen, die es den kultivierten Zellen ermöglichen, sich natürlicher zu verhalten. Daher sind neuartige Substrate auf Biomaterialbasis mit maßgeschneiderten Eigenschaften sehr gefragt. Die Mikrotechnik ist ein leistungsstarkes Werkzeug, das bei der Herstellung der Funktionsgerüste hilft, um verschiedene Eigenschaften der in vivo Umgebung zu reproduzieren und auf in vitro Bedingungen zu übertragen. Die Gerüstkonstruktionsparameter können manipuliert werden, um die für das jeweilige Gewebe spezifischen Anforderungen zu erfüllen. Eine der grundlegenden Einschränkungen bei aktuellen Herstellungsverfahren ist jedoch die Unfähigkeit, mehrere Gerüsteigenschaften auf vorgefertigte Weise in eine einzelne Gerüststruktur zu integrieren. Diese Dissertation befasst sich mit Gerüstmikrofabrikations- und Oberflächenmodifikations-techniken, welche die Mikrostrukturierungstechnologie verwenden und die gleichzeitige Kontrolle über verschiedene Gerüsteigenschaften ermöglichen. Diese Ansätze bei der Mikrofabrikation von Polymergerüsten werden verwendet, um physikalische und chemische Eigenschaften bereitzustellen, die für die Leberzellkultur optimiert sind. Die physikochemischen Aspekte, die die zelluläre Mikroumgebung von Lebergewebe in vivo ausmachen, werden diskutiert und anschließend werden relevante Technologien vorgestellt, mit denen einige dieser Aspekte in vitro reguliert werden können. Im ersten Teil dieser Arbeit wird ein neuartiges zweistufiges Verfahren zur Herstellung von Polymergerüsten mit mikroporöser Struktur und definierter Topographie gezeigt. Um 3D-Matrizen mit integrierter Porosität zu erhalten, wurde nach der Herstellung mikroporöser Folien ein Mikrostrukturierungsprozess unter Verwendung der Mehrschicht Polymer-Thermoformtechnologie durchgeführt. Diese Methoden wurden verwendet, um Substrate für die organotypische 3D-Hepatozytenkultivierung herzustellen. Poröse Gerüste mit Mikrokavitäten wurden aus lösungsmittelgegossenen und phasengetrennten Polymilchsäure (PLA) Folien gebildet. Die Proben wurden auf grundlegende mechanische und Oberflächenspezifische Eigenschaften sowie auf die Zellleistung untersucht. Um einen Bezugspunkt für die Bewertung der hergestellten Matrices bereitzustellen, wurden PLA-Gerüste mit zuvor beschriebenen Substraten auf Polycarbonat (PC)-Basis mit ähnlicher Geometrie verglichen. HepG2-Zellen, die in PLA-Gerüsten kultiviert wurden, zeigten eine gewebeartige 3D-Aggregation und eine erhöhte Sekretionsrate von Albumin im Vergleich zu PC-Gerüsten. Anschließend wurde dieses zweistufige Herstellungsverfahren verwendet, um schnell abbaubare Gerüste für die gerüstfreie Zellblatttechnik herzustellen. Gerüste mit kontrollierter Porosität und Topographie, die die Schlüsselmerkmale von Lebersinusoiden nachahmen, wurden aus Poly(milch-co-glykolsäure) (PLGA)-Copolymer hergestellt und für den in vitro Abbau in Zellkultur charakterisiert. Um die Beziehung zwischen dem Abbau des Gerüsts und der Organisation der Zellen in der PLGA-Matrix aufzudecken, wurde die Lebensfähigkeit und Morphologie der kultivierten Zellen zusammen mit der Morphologie des Gerüsts untersucht. Im zweiten Teil dieser Arbeit wurden verschiedene technische Lösungen für die gerichtete Strukturierung mikroporöser Polymergerüste bewertet und ihre Eignung zur Erzeugung einer benutzerdefinierten lebenswichtigen oligozellulären Morphologie auf künstlichem Substrat vorgestellt. Besonderes Augenmerk wurde auf das 3D-Mikrokontaktdruckverfahren (3DµCP) gelegt, das die Vorteile des Mikrothermoformens und des Mikrokontaktdrucks kombiniert und eine räumlich-zeitliche Kontrolle über morphologische und chemische Merkmale in einem einzigen Schritt ermöglicht. Um das Potenzial dieser Technik aufzuzeigen, wurden Gerüste mit bestimmten Mikrostrukturen wie Kanäle mit verschiedenen Tiefen und Breiten sowie komplexere Muster hergestellt und verschiedene ECM-Moleküle gleichzeitig in die vordefinierten Geometrien übertragen. Die Gültigkeit des 3DµCP-Prozesses wurde durch mikroskopische Messungen, Fluoreszenzfärbung und Testen der Substrate auf Zelladhäsionsantwort gezeigt. Schließlich wird in dieser Arbeit die Herstellungsmethode zur Erzeugung komplexer Gerüste für die 3D- und gesteuerte Co-Kultivierung von Leberzellen vorgestellt. Polymermatrizen, die die grundlegende Leberarchitektur replizieren und somit eine gut organisierte Leberzellzusammensetzung ermöglichen, wurden erfolgreich unter Verwendung der 3DµCP-Methode hergestellt. Auf der Polycarbonatoberfläche wurden gleichzeitig chemische und topografische Leitfäden in Form sinusförmiger Strukturen strukturiert. Um die 3D-Gewebemikrostruktur zu replizieren, wurden EA.hy926- und HepG2-Zellen auf beiden Seiten des strukturierten porösen Gerüsts Co-kultiviert und anschließend einander gegenüber gestapelt, wodurch zugehörige Kanäle zur Bildung einer Kapillare führen. Das Potenzial unseres 3DµCP-strukturierten Gerüsts für die gerichtete Co-Kultivierung von Zellen wurde unter statischen Zellkulturbedingungen demonstriert. Am Ende wurden Gerüste für die weiteren Anwendungen im perfundierten Bioreaktorsystem angepasst.
- Zugangsstatus: Freier Zugang