Erschienen:
[Erscheinungsort nicht ermittelbar]: The University of Hong Kong (Pokfulam, Hong Kong), 2014
Sprache:
Englisch
DOI:
10.5353/th_b5295530
Identifikator:
Entstehung:
Hochschulschrift:
Dissertation, The University of Hong Kong (Pokfulam, Hong Kong), 2014
Anmerkungen:
Beschreibung:
With the growing needs for energy, photovoltaic solar cells have attracted increasing research interests owing to its potentially renewable, feasible and efficient applications. Compared to its inorganic counterparts, organic solar cell (OSC) is highly desirable due to the low-cost processing, light weight, and the capability of flexible applications. While rapid progress has been made with the conversion efficiency approaching 10%, challenges towards high performance OSCs remain, including further improving device efficiency, fully realizing flexible applications, achieving more feasible large-area solution process and extending the stability of organic device. Having understood the key technical issues of designing high performance OSCs, we focus our work on (1) introducing flexible graphene transparent electrodes into OSCs as effective anode and cathode; (2) interface engineering of metal oxide carrier transport layers (CTLs) in OSCs through incorporating plasmonic metal nanomaterials ;(3)proposing novel film formation approach for solution-processed CTLs in OSCs in order to improve the film quality and thus device performance. The detailed work is listed below: 1. Design of transparent graphene electrodes for flexible OSCs Flexible graphene films are introduced into OSCs as transparent electrodes, which complement the flexibility of organic materials. We demonstrate graphene can function effectively as both the anode and cathode in OSCs: a) Graphene anode: we propose an interface modification for graphene to function as anode as an alternative to using aconventional polymer CTL. Using the proposed interfacial modification, graphene OSCs show enhanced performance. Further analysis shows that our approach provides favorable energy alignment and improved interfacial contact. b) Graphene cathode: efficient OSCs using graphene cathode are demonstrated, using a new composite CTL of aluminum-titanium oxide (Al-TiO2).We show that the role of Al is two-fold: improving the wettability as well as reducing the work function of graphene. To facilitate electron extraction, self-assembledTiO2is employed on the Al-covered graphene, which exhibits uniform morphology. 2. Incorporation of plasmonic nanomaterialsinto the metal oxide CTLinOSCs By incorporating metallic nanoparticles (NPs) into the TiO2CTLin OSCs, we demonstrate the interesting plasmonic-electrical effect which leads to optically induced charge extraction enhancement. While OSCs using TiO2CTL can only operate by ultraviolet (UV)activation, NP-incorporated TiO2enables OSCs to perform efficiently at a plasmonic wavelength far longer than the UV light. In addition, the effciency of OSCs incorporated with NPs is notably enhanced. We attribute the improvement to the charge injection of plasmonically excited electrons from NPs into TiO2. 3. Formation of uniform TiO2CTLfor large area applications using a self-assembly approach A solution-processed self-assembly method is proposed for forming large-area high-quality CTL films. Owing to the careful control of solvent evaporation, uniform film is formed, leading to enhanced OSC performance. Meanwhile, our method is capable of forming large-area films. This approach can contribute to future low-cost, large-area applications. ; published_or_final_version ; Electrical and Electronic Engineering ; Doctoral ; Doctor of Philosophy