• Medientyp: E-Book
  • Titel: Dirichlet Policies for Reinforced Factor Portfolios
  • Beteiligte: André, Eric [Verfasser:in]; Coqueret, Guillaume [Verfasser:in]
  • Erschienen: [S.l.]: SSRN, [2021]
  • Umfang: 1 Online-Ressource (41 p)
  • Sprache: Englisch
  • DOI: 10.2139/ssrn.3726714
  • Identifikator:
  • Entstehung:
  • Anmerkungen: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments June 25, 2021 erstellt
  • Beschreibung: This article aims to combine factor investing and reinforcement learning (RL). The agent learns through sequential random allocations which rely on firms' characteristics. Using Dirichlet distributions as the driving policy, we derive closed forms for the policy gradients and analytical properties of the performance measure. This enables the implementation of REINFORCE methods, which we perform on a large dataset of US equities. Across a large range of parametric choices, our result indicates that RL-based portfolios are very close to the equally-weighted (1/N) allocation. This implies that the agent learns to be *agnostic* with regard to factors, which can partly be explained by cross-sectional regressions showing a strong time variation in the relationship between returns and firm characteristics
  • Zugangsstatus: Freier Zugang