• Medientyp: E-Book; Hochschulschrift
  • Titel: Miniaturisierte und markierungsfreie Analyse einzelner Mikrofluidsegmente unter Einsatz der oberflächenverstärkten Raman-Spektroskopie
  • Beteiligte: Mendl, Alexander [Verfasser:in]; Köhler, Michael [Akademische:r Betreuer:in]; Cierpka, Christian [Akademische:r Betreuer:in]; Maskos, Michael [Akademische:r Betreuer:in]
  • Körperschaft: Technische Universität Ilmenau
  • Erschienen: Ilmenau: Universitätsbibliothek, [2022?]
  • Umfang: 1 Online-Ressource (vii, 156 Blätter); Diagramme, Illustrationen
  • Sprache: Deutsch
  • DOI: 10.22032/dbt.51925
  • Identifikator:
  • RVK-Notation: VN 7507 : Dissertationen, Habilitationsschriften, wertvollere und umfangreichere Sonderdrucke
  • Schlagwörter: Mikrofluidik > Prozessmesstechnik > Raman-Spektroskopie
  • Entstehung:
  • Hochschulschrift: Dissertation, Technische Universität Ilmenau, 2022
  • Anmerkungen: Tag der Verteidigung: 19.01.2022
  • Beschreibung: Die Mikrofluidsegmenttechnik ermöglicht es, Reaktionen unter optimierten Strömungsverhältnissen und mit einer minimalen Substanzmenge durchzuführen. Besonders für mehrdimensionale Reaktionsscreenings, bei denen die Einflüsse mehrerer Effektoren gleichzeitig untersucht werden, eignet sich diese Technik, da die Segmente geordnet durch das System geführt werden, wodurch die Zusammensetzung jedes einzelnen Segments bekannt ist. Deshalb hat bei dieser meist sehr komplexen und technisch aufwendigen Verfahrensweise die Analyse der Segmente bzw. deren Inhaltsstoffe eine große Bedeutung. Neben der optischen Auswertung oder der Fluoreszenzmessung, bei der die Zielsubstanz mit einer fluoreszierenden Gruppe markiert werden muss, werden aktuell markierungsfreie Detektionsmethoden entwickelt. Diese Detektionsmethoden sind aber noch sehr aufwendig und sind ohne tiefgreifende Fachkenntnisse auf dem jeweiligen Gebiet nicht anzuwenden. Der Bedarf nach einer einfachen Analysemethode, mit der auch chemische Veränderungen in den Segmenten markierungsfrei detektiert werden können, ist die Grundlage für die Motivation der hier vorgestellten Arbeit. Diese beschreibt eine neue Methode für die markierungsfreie Analyse einzelner Fluidsegmente, die durch einen kompakten Aufbau und eine einfache Anbindung an beliebige Prozesse einen weitverbreiteten Einsatz der Analysetechnik ermöglicht. Die entwickelte Analysemethode beschreibt die erstmalige Kopplung der oberflächenverstärkten Raman-Spektroskopie (engl. surface enhanced Raman scattering/spectroscopy, SERS) mit einer Umsetzung der seriell erzeugten Segmente auf eine parallele Array-Struktur aus SERS-aktiven Messstellen (SERS-Array). Dieser Umsetzungsschritt entkoppelt die zeitlich kritische Messung von der schnellen Prozessierung der Segmente und ermöglicht zudem einen optimalen optischen Zugang zu den Messstellen, wodurch der Einsatz kompakter Spektrometersysteme ermöglicht wird. Zur Umsetzung des Konzepts wurde ein neuartiger SERS-aktiver Hydrogel-Film sowie ein Verfahren zum Auftragen des Films auf die Messstellen entwickelt. Bei der Entwicklung des Hydrogel-Films wurde eine Methode zur Herstellung quellbarer, SERS-aktiver Komposit-Sensorpartikel weiterentwickelt, indem die Haftung auf einem Glasträger, die Verdunstung des Lösungsmittels während der Applikation und die SERS-Verstärkung untersucht und angepasst wurden. Weiterhin wurde die Leistungsfähigkeit der entwickelten Analysemethode bestimmt, so zeigt das SERS-Array hervorragende Werte in Bezug auf die Langzeitstabilität. Das Gesamtsystem wurde im Vergleich mit anderen SERS-basierten Analysemethoden bewertet. Dabei zeigt sich, dass vergleichsweise hohe Frequenzen an Segmenten analysiert werden können und dass die Quantifizierung von Testsubstanzen in einem breiten Konzentrationsbereich, der etwas oberhalb derer der Vergleichssysteme liegt, möglich ist. Anhand einer Desaminierungsreaktion konnte gezeigt werden, dass in dieser Arbeit eine kompakte und einfach adaptierbare Methode für SERS-Messungen entwickelt wurde, die chemische Veränderungen innerhalb von Mikrofluidsegmenten detektieren kann.
  • Zugangsstatus: Freier Zugang