• Medientyp: E-Book
  • Titel: Adaptive weights community detection
  • Beteiligte: Besold, Franz [Verfasser:in]; Spokojnyj, Vladimir G. [Verfasser:in]
  • Körperschaft: Weierstraß-Institut für Angewandte Analysis und Stochastik
  • Erschienen: Berlin: Weierstraß-Institut für Angewandte Analysis und Stochastik Leibniz-Institut im Forschungsverbund Berlin e.V., 2022
  • Erschienen in: Weierstraß-Institut für Angewandte Analysis und Stochastik: Preprint ; 2951
  • Umfang: 1 Online-Ressource (43 Seiten, 645,1 KB); Diagramme
  • Sprache: Englisch
  • DOI: 10.20347/WIAS.PREPRINT.2951
  • Identifikator:
  • Schlagwörter: Forschungsbericht
  • Entstehung:
  • Anmerkungen: Literaturverzeichnis: Seite 39-41
  • Beschreibung: Due to the technological progress of the last decades, Community Detection has become a major topic in machine learning. However, there is still a huge gap between practical and theoretical results, as theoretically optimal procedures often lack a feasible implementation and vice versa. This paper aims to close this gap and presents a novel algorithm that is both numerically and statistically efficient. Our procedure uses a test of homogeneity to compute adaptive weights describing local communities. The approach was inspired by the Adaptive Weights Community Detection (AWCD) algorithm by [2]. This algorithm delivered some promising results on artificial and real-life data, but our theoretical analysis reveals its performance to be suboptimal on a stochastic block model. In particular, the involved estimators are biased and the procedure does not work for sparse graphs. We propose significant modifications, addressing both shortcomings and achieving a nearly optimal rate of strong consistency on the stochastic block model. Our theoretical results are illustrated and validated by numerical experiments.
  • Zugangsstatus: Freier Zugang