• Medientyp: E-Book
  • Titel: lclogit2 : An Enhanced Module to Estimate Latent Class Conditional Logit Models
  • Beteiligte: Yoo, Hong Il [Verfasser:in]
  • Erschienen: [S.l.]: SSRN, 2019
  • Umfang: 1 Online-Ressource (20 p)
  • Sprache: Englisch
  • DOI: 10.2139/ssrn.3484429
  • Identifikator:
  • Entstehung:
  • Anmerkungen: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments November 10, 2019 erstellt
  • Beschreibung: This paper describes Stata command lclogit2, an enhanced version of lclogit (Pacifico and Yoo, 2013). Like its predecessor, lclogit2 uses the Expectation-Maximization (EM) algorithm to estimate latent class conditional logit (LCL) models. But it executes the EM algorithm's core algebraic operations in Mata, and runs considerably faster as a result. It also allows linear constraints on parameters to be imposed in a more convenient and flexible manner. It comes with parallel command lclogitml2, a new standalone program that uses gradient-based algorithms to estimate LCL models. Both lclogit2 and lclogitml2 are supported by a new postestimation tool, lclogitwtp2, that evaluates willingness-to-pay measures implied by estimated LCL models
  • Zugangsstatus: Freier Zugang