• Medientyp: E-Book
  • Titel: An Information Diffusion Based Recommendation Framework for Micro-Blogging
  • Beteiligte: Cheng, Jiesi [Verfasser:in]; Sun, Aaron R. [Verfasser:in]; Hu, Daning [Verfasser:in]; Zeng, Daniel Dajun [Verfasser:in]
  • Erschienen: [S.l.]: SSRN, 2012
  • Umfang: 1 Online-Ressource (42 p)
  • Sprache: Englisch
  • DOI: 10.2139/ssrn.1713486
  • Identifikator:
  • Entstehung:
  • Anmerkungen: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments November 1, 2010 erstellt
  • Beschreibung: Micro-blogging is increasingly extending its role from a daily chatting tool into a critical platform for individuals and organizations to seek and share real-time news updates during emergencies. However, seeking and extracting useful information from micro-blogging sites poses significant challenges due to the volume of the traffic and the presence of a large body of irrelevant personal messages and spams. In this paper, we propose a novel recommendation framework to overcome this problem. By analyzing information diffusion patterns among a large set of micro-blogs who play the role of emergency news providers, our approach could select a small subset as recommended emergency news feeds for regular users. We have evaluated our diffusion-based recommendation framework on Twitter during the early outbreak of H1N1 Flu. The evaluation results show that our method results in more balanced and comprehensive recommendations compared to benchmark approaches
  • Zugangsstatus: Freier Zugang