• Medientyp: E-Book
  • Titel: Bayesian Model Selection and Prior Calibration for Structural Models in Economic Experiments : Some Guidance for the Practitioner
  • Beteiligte: Bland, James R. [Verfasser:in]
  • Erschienen: [S.l.]: SSRN, 2023
  • Umfang: 1 Online-Ressource (43 p)
  • Sprache: Englisch
  • DOI: 10.2139/ssrn.4334267
  • Identifikator:
  • Entstehung:
  • Anmerkungen: Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments January 24, 2023 erstellt
  • Beschreibung: Bayesian estimates from experimental data can be influenced by highly diffuse or "uninformative" priors. This paper discusses how practitioners can use their own expertise to critique and select a prior that (i) incorporates our knowledge as experts in the field, and (ii) achieves favorable sampling properties. I demonstrate these techniques using data from eleven experiments of decision-making under risk, and discuss some implications of the findings
  • Zugangsstatus: Freier Zugang