Anmerkungen:
Nach Informationen von SSRN wurde die ursprüngliche Fassung des Dokuments January 24, 2023 erstellt
Beschreibung:
Bayesian estimates from experimental data can be influenced by highly diffuse or "uninformative" priors. This paper discusses how practitioners can use their own expertise to critique and select a prior that (i) incorporates our knowledge as experts in the field, and (ii) achieves favorable sampling properties. I demonstrate these techniques using data from eleven experiments of decision-making under risk, and discuss some implications of the findings