Anmerkungen:
Unterschiede zwischen dem gedruckten Dokument und der elektronischen Ressource können nicht ausgeschlossen werden. - Auch als gedr. Ausg. vorhanden
Systemvoraussetzungen: Acrobat reader
Beschreibung:
Under a well-known scaling, supercritical Galton-Watson processes $Z$ converge to a non-degenerate non-negative random limit variable $W.$ We are dealing with the left tail (i.e. lose to the origin) asymptotics of its law. In the Bötcher case (i.e. if always at least two offspring are born), we describe the precise asymptotics exposing tiny oscillations (Theorem 1). Under a reasonable additional assumption, the oscillations disappear (Corollary 2). Also in the Böttcher case, we improve a recent lower deviation probability result by describing the precise asymptotics under a logarithmic scaling (Theorem 3). Under additional assumptions, we even get the fine (i.e. without log-scaling) asymptotics (Theorem 4).