• Medientyp: E-Artikel; Sonstige Veröffentlichung
  • Titel: TIB's visual analytics group at MediaEval '20: Detecting fake news on corona virus and 5G conspiracy
  • Beteiligte: Cheema, Gullal S. [Verfasser:in]; Hakimov, Sherzod [Verfasser:in]; Ewerth, Ralph [Verfasser:in]
  • Erschienen: Aachen, Germany : RWTH Aachen, 2020
  • Ausgabe: published Version
  • Sprache: Englisch
  • DOI: https://doi.org/10.34657/9170
  • Schlagwörter: Konferenzschrift ; Social media ; Social networking (online) ; Viruses ; Visual analytics ; Misleading informations ; Simple approach ; Hot topics
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Fake news on social media has become a hot topic of research as it negatively impacts the discourse of real news in the public. Specifi-cally, the ongoing COVID-19 pandemic has seen a rise of inaccurate and misleading information due to the surrounding controversies and unknown details at the beginning of the pandemic. The Fak-eNews task at MediaEval 2020 tackles this problem by creating a challenge to automatically detect tweets containing misinformation based on text and structure from Twitter follower network. In this paper, we present a simple approach that uses BERT embeddings and a shallow neural network for classifying tweets using only text, and discuss our findings and limitations of the approach in text-based misinformation detection.
  • Zugangsstatus: Freier Zugang
  • Rechte-/Nutzungshinweise: Namensnennung (CC BY)