Anmerkungen:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
Beschreibung:
Fake news on social media has become a hot topic of research as it negatively impacts the discourse of real news in the public. Specifi-cally, the ongoing COVID-19 pandemic has seen a rise of inaccurate and misleading information due to the surrounding controversies and unknown details at the beginning of the pandemic. The Fak-eNews task at MediaEval 2020 tackles this problem by creating a challenge to automatically detect tweets containing misinformation based on text and structure from Twitter follower network. In this paper, we present a simple approach that uses BERT embeddings and a shallow neural network for classifying tweets using only text, and discuss our findings and limitations of the approach in text-based misinformation detection.