Anmerkungen:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
Beschreibung:
This thesis is concerned with the ubiquitous problem of estimating the hidden state of a discrete-time stochastic nonlinear dynamic system. The focus is on the derivation of new Gaussian state estimators and the improvement of existing approaches. Also the challenging task of distributed state estimation is addressed by proposing a sample-based fusion of local state estimates. The proposed estimation techniques are applied to extended object tracking.