• Medientyp: Sonstige Veröffentlichung; Dissertation; Elektronische Hochschulschrift; E-Book
  • Titel: Adaptive Wavelet Methods for Variational Formulations of Nonlinear Elliptic PDES on Tensor-Product Domains
  • Beteiligte: Pabel, Roland [Verfasser:in]
  • Erschienen: Cologne University: KUPS, 2015-05
  • Sprache: Englisch
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: This thesis is concerned with the numerical solution of boundary value problems (BVPs) governed by semilinear elliptic partial differential equations (PDEs). Semilinearity here refers to a special case of nonlinearity, i.e., the case of a linear operator combined with a nonlinear operator acting as a perturbation. In general, such BVPs are solved in an iterative fashion. It is, therefore, of primal importance to develop efficient schemes that guarantee convergence of the numerically approximated PDE solutions towards the exact solution. Unlike the typical finite element method (FEM) theory for the numerical solution of the nonlinear operators, the new adaptive wavelet theory proposed in [Cohen.Dahmen.DeVore:2003:a, Cohen.Dahmen.DeVore:2003:b] guarantees convergence of adaptive schemes with fixed approximation rates. Furthermore, optimal, i.e., linear, complexity estimates of such adaptive solution methods have been established. These achievements are possible since wavelets allow for a completely new perspective to attack BVPs: namely, to represent PDEs in their original infinite dimensional realm. Wavelets are the ideal candidate for this purpose since they allow to represent functions in infinite-dimensional general Banach or Hilbert spaces and operators on these. The purpose of adaptivity in the solution process of nonlinear PDEs is to invest extra degrees of freedom (DOFs) only where necessary, i.e., where the exact solution requires a higher number of function coefficients to represent it accurately. Wavelets in this context represent function bases with special analytical properties, e.g., the wavelets considered herein are piecewise polynomials, have compact support and norm equivalences between certain function spaces and the l_2 sequence spaces of expansion coefficients exist. This new paradigm presents nevertheless some problems in the design of practical algorithms. Imposing a certain structure, a tree structure, remedies these problems completely while restricting the applicability of the theoretical ...