• Medientyp: Sonstige Veröffentlichung; E-Artikel
  • Titel: Data-Driven Synthesis of Cartoon Faces Using Different Styles
  • Beteiligte: Zhang, Yong [Verfasser:in]; Dong, Weiming [Verfasser:in]; Ma, Chongyang [Verfasser:in]; Mei, Xing [Verfasser:in]; Li, Ke [Verfasser:in]; Huang, Feiyue [Verfasser:in]; Hu, Bao-Gang [Verfasser:in]; Deussen, Oliver [Verfasser:in]
  • Erschienen: KOPS - The Institutional Repository of the University of Konstanz, 2017
  • Erschienen in: IEEE Transactions on image processing. 2017, 26(1), pp. 464-478. ISSN 1057-7149. eISSN 1941-0042. Available under: doi:10.1109/TIP.2016.2628581
  • Sprache: Englisch
  • DOI: https://doi.org/10.1109/TIP.2016.2628581
  • Schlagwörter: Cartoon face ; face stylization ; component-based modeling ; data-driven synthesis
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: This paper presents a data-driven approach for automatically generating cartoon faces in different styles from a given portrait image. Our stylization pipeline consists of two steps: an offline analysis step to learn about how to select and compose facial components from the databases; a runtime synthesis step to generate the cartoon face by assembling parts from a database of stylized facial components. We propose an optimization framework that, for a given artistic style, simultaneously considers the desired image-cartoon relationships of the facial components and a proper adjustment of the image composition. We measure the similarity between facial components of the input image and our cartoon database via image feature matching, and introduce a probabilistic framework for modeling the relationships between cartoon facial components. We incorporate prior knowledge about image-cartoon relationships and the optimal composition of facial components extracted from a set of cartoon faces to maintain a natural, consistent, and attractive look of the results. We demonstrate generality and robustness of our approach by applying it to a variety of portrait images and compare our output with stylized results created by artists via a comprehensive user study ; published
  • Zugangsstatus: Freier Zugang
  • Rechte-/Nutzungshinweise: Urheberrechtsschutz