• Medientyp: Bericht; E-Book
  • Titel: Mixed problems with a parameter
  • Beteiligte: Shlapunov, Alexander [Verfasser:in]; Tarkhanov, Nikolai Nikolaevich [Verfasser:in]
  • Erschienen: University of Potsdam: publish.UP, 2008-11-18
  • Sprache: Englisch
  • Schlagwörter: Institut für Mathematik
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Let X be a smooth n -dimensional manifold and D be an open connected set in X with smooth boundary ∂D. Perturbing the Cauchy problem for an elliptic system Au = f in D with data on a closed set Γ ⊂ ∂D we obtain a family of mixed problems depending on a small parameter ε > 0. Although the mixed problems are subject to a non-coercive boundary condition on ∂D\Γ in general, each of them is uniquely solvable in an appropriate Hilbert space DT and the corresponding family {uε} of solutions approximates the solution of the Cauchy problem in DT whenever the solution exists. We also prove that the existence of a solution to the Cauchy problem in DT is equivalent to the boundedness of the family {uε}. We thus derive a solvability condition for the Cauchy problem and an effective method of constructing its solution. Examples for Dirac operators in the Euclidean space Rn are considered. In the latter case we obtain a family of mixed boundary problems for the Helmholtz equation.
  • Zugangsstatus: Freier Zugang
  • Rechte-/Nutzungshinweise: Urheberrechtsschutz