• Medientyp: E-Artikel
  • Titel: MISM: a medical image segmentation metric for evaluation of weak labeled data
  • Beteiligte: Hartmann, Dennis [Verfasser:in]; Schmid, Verena [Verfasser:in]; Meyer, Philip [Verfasser:in]; Auer, Florian [Verfasser:in]; Soto-Rey, Iñaki [Verfasser:in]; Müller, Dominik [Verfasser:in]; Kramer, Frank [Verfasser:in]
  • Erschienen: Augsburg University Publication Server (OPUS), 2023-08-08
  • Sprache: Englisch
  • DOI: https://doi.org/10.3390/diagnostics13162618
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Performance measures are an important tool for assessing and comparing different medical image segmentation algorithms. Unfortunately, the current measures have their weaknesses when it comes to assessing certain edge cases. These limitations arise when images with a very small region of interest or without a region of interest at all are assessed. As a solution to these limitations, we propose a new medical image segmentation metric: MISm. This metric is a composition of the Dice similarity coefficient and the weighted specificity. MISm was investigated for definition gaps, an appropriate scoring gradient, and different weighting coefficients used to propose a constant value. Furthermore, an evaluation was performed by comparing the popular metrics in the medical image segmentation and MISm using images of magnet resonance tomography from several fictitious prediction scenarios. Our analysis shows that MISm can be applied in a general way and thus also covers the mentioned edge cases, which are not covered by other metrics, in a reasonable way. In order to allow easy access to MISm and therefore widespread application in the community, as well as reproducibility of experimental results, we included MISm in the publicly available evaluation framework MISeval.
  • Zugangsstatus: Freier Zugang