• Medientyp: Dissertation; Elektronische Hochschulschrift; E-Book
  • Titel: Asymptotische Hyperfunktionen, temperierte Hyperfunktionen und asymptotische Entwicklungen
  • Beteiligte: Schmidt, Andreas U. [Verfasser:in]
  • Erschienen: Publication Server of Goethe University Frankfurt am Main, 2005-06-20
  • Sprache: Deutsch
  • Schlagwörter: Asymptotische Entwicklung ; Hyperfunktion
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Wir führen eine neue Unterklasse der Fourier Hyperfunktionen mit polynomialen Wachstumsbedingungen ein mit dem Ziel, asymptotische Entwicklungen von Hyperfunktionen studieren zu wollen, wie sie für gewisse Distributionenklassen bekannt sind. Wir entwickeln zuerst die Theorie analytischer Funktionale auf Räumen integrabler Funktionen bezüglich Maßen mit Wachstum O(|Re z|^gamma), wobei gamma in R ist, im Unendlichen. Ein an das berühmte Phragmén-Lindelöf-Prinzip erinnerndes, einfaches analytisches Resultat bildet die Basis der Dualitätstheorie dieser Räume zu Funktionen mit festgelegtem Wachstumstyp. Wir studieren diese Dualität analytischer Funktionale mit Wachstumsbedingungen und unbeschränkten Trägern gründlich in einer Dimension unter Verwendung des von den Fourier Hyperfunktionen her bekannten exponentiell abfallenden Cauchy-Hilbert-Kerns. Daraus ergeben sich Analoga zu den Theoremen von Runge und Mittag-Leffler, die die Grundlage für die Garbentheorie der Hyperfunktionen mit polynomialen Wachstumsbedingungen sind, die wir sodann entwickeln. Die für uns wichtigsten neuen Klassen von Fourier Hyperfunktionen sind die von unendlichem Typ, das heißt solche, die wie eine beliebige Potenz wachsen beziehungsweise schneller als jede Potenz abfallen. In n Dimensionen benutzen wir die Fouriertransformation und Dualität um das Verhältnis dieser temperierten beziehungsweise asymptotischen Hyperfunktionen zu bekannten Distributionenräumen zu studieren. Wir leiten Theoreme vom Paley-Wiener-Typ her, die es uns erlauben, unsere Hyperfunktionen in ein Schema zu ordnen, das Wachstumsordnung und Singularität gegenüberstellt. Wir zeigen, daß dieses Schema eine sinvolle Erweiterung des von Gelfand und Shilow zur Charakterisierung von Testfunktionenräumen eingeführten Schemas der Räume S(alpha,beta) um verallgemeinerte Funktionen ist. Schließlich zeigen wir die Nuklearität der temperierten und asymptotischen Hyperfunktionen. Wir zeigen, daß die asymptotischen Hyperfunktionen genau die Klasse bilden, die Moment-asymptotische ...
  • Zugangsstatus: Freier Zugang