• Medientyp: Elektronische Hochschulschrift; E-Book; Dissertation
  • Titel: Galois-Operationen auf verallgemeinerten Macbeath-Hurwitz-Kurven ; Galois actions on generalized Macbeath-Hurwitz curves
  • Beteiligte: Feierabend, Frank [VerfasserIn]
  • Erschienen: Publication Server of Goethe University Frankfurt am Main, 2009-12-04
  • Sprache: Deutsch
  • Schlagwörter: Quaternionenalgebra ; Fuchs-Gruppe ; Dreiecksgruppe ; Galois-Gruppe ; Arithmetische Gruppe
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Gegenstand dieser Arbeit sind Galoisoperationen auf quasiplatonischen Riemannschen Flächen mit einer Automorphismengruppe isomorph zu PSL(2,F(q)). Quasiplatonische Riemannsche Flächen werden durch torsionsfreie Normalteiler N in einer Dreiecksgruppe D uniformisiert, d.h. N ist die universelle Überlagerungsgruppe und die Flächen, die man auch als algebraische Kurven beschreiben kann, sind isomorph zu N\U, wenn U die obere Halbebene bezeichnet. Bzgl. der Größe der Automorphismengruppen bilden die quasiplatonischen Kurven die lokalen Maxima im Modulraum. Die absoluten Maxima liegen bei den Hurwitz-Kurven; hier hat die Automorphismengruppe die maximale Größe von 84(g-1), wenn g>1 das Geschlecht der Kurve ist. Der Normalisator in PSL(2,R) der Überlagerungsgruppe N ist dann die Dreiecksgruppe mit Signatur (2,3,7). Macbeath hat die Bedingungen dafür gefunden, wann PSL(2,F(q)) eine Hurwitz-Gruppe ist. Von besonderem Interesse ist dabei der Fall, dass q=p eine Primzahl kongruent +-1 mod 7 ist. Hier hat man drei nicht-isomorphe Kurven, die jedoch alle galoiskonjugiert zueinander sind. In der Arbeit werden Bedingungen angegeben, unter denen sich dieses Resultat auf Dreiecksgruppen D mit einer Signatur der Form (2,m_1,m_2) verallgemeinern lässt. Dabei gehen einerseits Ergebnisse von Frye ein, der die Anzahl der verschiedenen torsionsfreien Normalteiler N<D mit Quotienten PSL(2,F(q)) über die Spurtupel der Erzeugenden von D bestimmt hat. Andererseits wird eine Methode von Streit verwendet, mit der man die Galoisoperation auf den Kurven anhand des Verhaltens der Multiplikatoren der Erzeugenden in der Automorphismengruppe nachvollziehen kann. Es zeigt sich, dass sich Spur- und Multiplikatortupel entsprechen, woraus man die Anzahl und Länge der Galois-Orbits erhält. Außerdem lässt sich der Definitionskörper der Kurven bestimmen. Offen bleibt das genaue Verhalten bei Signaturen (m_0,m_1,m_2) mit m_i ungleich 2 für alle i. Hier gibt es zu jedem Multiplikatortupel zwei verschiedene Spurtupel. Kann man die Kurven durch die ...
  • Zugangsstatus: Freier Zugang