• Medientyp: E-Book; Bericht
  • Titel: On singular limits of mean-field equations
  • Beteiligte: Dolbeault, Jean [Verfasser:in]; Markowich, Peter A. [Verfasser:in]; Unterreiter, Andreas [Verfasser:in]
  • Erschienen: KLUEDO - Publication Server of University of Kaiserslautern-Landau (RPTU), 2000
  • Sprache: Englisch
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Mean field equations arise as steady state versions of convection-diffusion systems where the convective field is determined as solution of a Poisson equation whose right hand side is affine in the solutions of the convection-diffusion equations. In this paper we consider the repulsive coupling case for a system of 2 convection-diffusion equations. For general diffusivities we prove the existence of a unique solution of the mean field equation by a variational technique. Also we analyse the small-Debye-length limit and prove convergence to either the so-called charge-neutral case or to a double obstacle problem for the limiting potential depending on the data.
  • Zugangsstatus: Freier Zugang