• Medientyp: Bericht; E-Book
  • Titel: Slender Body Theory for the Dynamics of Curved Viscous Fibers
  • Beteiligte: Panda, S. [VerfasserIn]; Wegener, R. [VerfasserIn]; Marheineke, N. [VerfasserIn]
  • Erschienen: KLUEDO - Publication Server of University of Kaiserslautern-Landau (RPTU), 2006
  • Sprache: Deutsch
  • Schlagwörter: Slender body theory ; Asymptotic expansions ; Curved viscous fibers ; Navier-Stokes equations ; Fluid dynamics ; Free boundary value problem
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: The paper at hand presents a slender body theory for the dynamics of a curved inertial viscous Newtonian ber. Neglecting surface tension and temperature dependence, the ber ow is modeled as a three-dimensional free boundary value problem via instationary incompressible Navier-Stokes equations. From regular asymptotic expansions in powers of the slenderness parameter leading-order balance laws for mass (cross-section) and momentum are derived that combine the unrestricted motion of the ber center-line with the inner viscous transport. The physically reasonable form of the one-dimensional ber model results thereby from the introduction of the intrinsic velocity that characterizes the convective terms. ; The paper at hand presents a slender body theory for the dynamics of a curved inertial viscous Newtonian ber. Neglecting surface tension and temperature dependence, the ber ow is modeled as a three-dimensional free boundary value problem via instationary incompressible Navier-Stokes equations. From regular asymptotic expansions in powers of the slenderness parameter leading-order balance laws for mass (cross-section) and momentum are derived that combine the unrestricted motion of the ber center-line with the inner viscous transport. The physically reasonable form of the one-dimensional ber model results thereby from the introduction of the intrinsic velocity that characterizes the convective terms.
  • Zugangsstatus: Freier Zugang