• Medientyp: Sonstige Veröffentlichung; E-Artikel
  • Titel: Femtosecond laser-based nanosurgery reveals the endogenous regeneration of single Z-discs including physiological consequences for cardiomyocytes
  • Beteiligte: Müller, Dominik [Verfasser:in]; Hagenah, Dorian [Verfasser:in]; Biswanath, Santoshi [Verfasser:in]; Coffee, Michelle [Verfasser:in]; Kampmann, Andreas [Verfasser:in]; Zweigerdt, Robert [Verfasser:in]; Heisterkamp, Alexander [Verfasser:in]; Kalies, Stefan M.K. [Verfasser:in]
  • Erschienen: London : Nature Publishing Group, 2019
  • Erschienen in: Scientific Reports 9 (2019), Nr. 1
  • Ausgabe: published Version
  • Sprache: Englisch
  • DOI: https://doi.org/10.15488/10472; https://doi.org/10.1038/s41598-019-40308-z
  • Schlagwörter: Z-disc ; nanosurgery ; cardiomyocyte
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: A highly organized cytoskeleton architecture is the basis for continuous and controlled contraction in cardiomyocytes (CMs). Abnormalities in cytoskeletal elements, like the Z-disc, are linked to several diseases. It is challenging to reveal the mechanisms of CM failure, endogenous repair, or mechanical homeostasis on the scale of single cytoskeletal elements. Here, we used a femtosecond (fs) laser to ablate single Z-discs in human pluripotent stem cells (hPSC) -derived CMs (hPSC-CM) and neonatal rat CMs. We show, that CM viability was unaffected by the loss of a single Z-disc. Furthermore, more than 40% of neonatal rat and 68% of hPSC-CMs recovered the Z-disc loss within 24 h. Significant differences to control cells, after the Z-disc loss, in terms of cell perimeter, x- and y-expansion and calcium homeostasis were not found. Only 14 days in vitro old hPSC-CMs reacted with a significant decrease in cell area, x- and y-expansion 24 h past nanosurgery. This demonstrates that CMs can compensate the loss of a single Z-disc and recover a regular sarcomeric pattern during spontaneous contraction. It also highlights the significant potential of fs laser-based nanosurgery to physically micro manipulate CMs to investigate cytoskeletal functions and organization of single elements. © 2019, The Author(s).
  • Zugangsstatus: Freier Zugang
  • Rechte-/Nutzungshinweise: Namensnennung (CC BY)