• Medientyp: E-Artikel; Sonstige Veröffentlichung
  • Titel: Process design for 5-axis ball end milling using a real-time capable dynamic material removal simulation
  • Beteiligte: Denkena, Berend [VerfasserIn]; Pape, O. [VerfasserIn]; Krödel, A. [VerfasserIn]; Böß, V. [VerfasserIn]; Ellersiek, L. [VerfasserIn]; Mücke, A. [VerfasserIn]
  • Erschienen: Heidelberg : Springer, 2021
  • Erschienen in: Production Engineering 15 (2021)
  • Ausgabe: published Version
  • Sprache: Englisch
  • DOI: https://doi.org/10.15488/10747; https://doi.org/10.1007/s11740-020-01003-5
  • ISSN: 0944-6524
  • Schlagwörter: Shape deviations ; Simulation ; Design ; Dexel ; Additive manufacturing process ; Process stability ; Milling (machining) ; Dynamic materials ; 3D printers ; Topography ; Ball milling ; Flexible materials ; Unstable process ; Running-in process ; Process design ; Nickel alloys ; Turbomachine blades ; Milling ; Titanium alloys ; Hard to cut material
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: For repairing turbine blades or die and mold forms, additive manufacturing processes are commonly used to build-up new material to damaged sections. Afterwards, a subsequent re-contouring process such as 5-axis ball end milling is required to remove the excess material restoring the often complex original geometries. The process design of the re-contouring operation has to be done virtually, because the individuality of the repair cases prevents actual running-in processes. Hard-to-cut materials e.g. titanium or nickel alloys, parts prone to vibration and long tool holders complicate the repair even further. Thus, a fast and flexible material removal simulation is needed. The simulation has to predict suitable processes focusing shape deviations under consideration of process stability for arbitrary complex engagement conditions. In this paper, a dynamic multi-dexel based material removal simulation is presented, which is able to predict high-resolution surface topography and stable parameters for arbitrary processes such as 5-axis ball end milling. In contrast to other works, the simulation is able to simulate an unstable process using discrete cutting edges in real-time. © 2020, The Author(s).
  • Zugangsstatus: Freier Zugang
  • Rechte-/Nutzungshinweise: Namensnennung (CC BY)