• Medientyp: Sonstige Veröffentlichung; E-Artikel
  • Titel: Multi-temporal land-cover classification of agricultural areas in two European regions with high resolution spotlight TerraSAR-X data
  • Beteiligte: Bargiel, Damian [Verfasser:in]; Herrmann, Sylvia [Verfasser:in]
  • Erschienen: Basel : MDPI AG, 2011
  • Erschienen in: Remote Sensing 3 (2011), Nr. 5
  • Ausgabe: published Version
  • Sprache: Englisch
  • DOI: https://doi.org/10.15488/1244; https://doi.org/10.3390/rs3050859
  • ISSN: 2072-4292
  • Schlagwörter: Vegetation class ; Monitoring system ; Ecosystems ; Landuse classifications ; Negative impacts ; Study areas ; Agricultural land use ; Radar image ; Population densities ; Radar ; Satellites ; Dual-polarized ; Agricultural areas ; High resolution ; Agricultural management ; Multi-temporal ; Ground truth ; Land use ; Maximum likelihood classifications ; Agriculture ; Classification accuracy ; Land-cover classification ; Population statistics ; Maximum likelihood ; [...]
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Functioning ecosystems offer multiple services for human well-being (e.g., food, freshwater, fiber). Agriculture provides several of these services but also can cause negative impacts. Thus, it is essential to derive up-to-date information about agricultural land use and its change. This paper describes the multi-temporal classification of agricultural land use based on high resolution spotlight TerraSAR-X images. A stack of l4 dual-polarized radar images taken during the vegetation season have been used for two different study areas (North of Germany and Southeast Poland). They represent extremely diverse regions with regard to their population density, agricultural management, as well as geological and geomorphological conditions. Thereby, the transferability of the classification method for different regions is tested. The Maximum Likelihood classification is based on a high amount of ground truth samples. Classification accuracies differ in both regions. Overall accuracy for all classes for the German area is 61.78% and 39.25% for the Polish region. Accuracies improved notably for both regions (about 90%) when single vegetation classes were merged into groups of classes. Such regular land use classifications, applicable for different European agricultural sites, can serve as basis for monitoring systems for agricultural land use and its related ecosystems. © 2011 by the authors. ; DBU (Deutsche Bundesstiftung Umwelt)
  • Zugangsstatus: Freier Zugang
  • Rechte-/Nutzungshinweise: Namensnennung - Nicht-kommerziell - Weitergabe unter gleichen Bedingungen (CC BY-NC-SA)