• Medientyp: Sonstige Veröffentlichung; E-Artikel
  • Titel: Involvement of bacterial TonB-dependent signaling in the generation of an oligogalacturonide damage-associated molecular pattern from plant cell walls exposed to Xanthomonas campestris pv. campestris pectate lyases
  • Beteiligte: Vorhölter, Frank-Jörg [Verfasser:in]; Wiggerich, Heinrich-Günter [Verfasser:in]; Scheidle, Heiko [Verfasser:in]; Sidhu, Vishaldeep Kaur [Verfasser:in]; Mrozek, Kalina [Verfasser:in]; Küster, Helge [Verfasser:in]; Pühler, Alfred [Verfasser:in]; Niehaus, Karsten [Verfasser:in]
  • Erschienen: London : BioMed Central Ltd, 2012
  • Erschienen in: BMC Microbiology 12 (2012)
  • Ausgabe: published Version
  • Sprache: Englisch
  • DOI: https://doi.org/10.15488/1184; https://doi.org/10.1186/1471-2180-12-239
  • ISSN: 1471-2180
  • Schlagwörter: complete genome sequence ; Pathogen ; Xanthomonas campestris ; host-pathogen interactions ; disease resistance ; elicits phytoalexin accumulation ; hypersensitive response ; polygalacturonate lyase ; Molecular plant-microbe interaction ; Trans-envelope signaling ; f-sp glycinea ; oxidative burst ; TonB system ; DAMP ; Damage-associate molecular pattern ; innate immunity ; transduction systems ; Oligogalacturonide
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Background: Efficient perception of attacking pathogens is essential for plants. Plant defense is evoked by molecules termed elicitors. Endogenous elicitors or damage-associated molecular patterns (DAMPs) originate from plant materials upon injury or pathogen activity. While there are comparably well-characterized examples for DAMPs, often oligogalacturonides (OGAs), generated by the activity of fungal pathogens, endogenous elicitors evoked by bacterial pathogens have been rarely described. In particular, the signal perception and transduction processes involved in DAMP generation are poorly characterized. Results: A mutant strain of the phytopathogenic bacterium Xanthomonas campestris pv. campestris deficient in exbD2, which encodes a component of its unusual elaborate TonB system, had impaired pectate lyase activity and caused no visible symptoms for defense on the non-host plant pepper (Capsicum annuum). A co-incubation of X. campestris pv. campestris with isolated cell wall material from C. annuum led to the release of compounds which induced an oxidative burst in cell suspension cultures of the non-host plant. Lipopolysaccharides and proteins were ruled out as elicitors by polymyxin B and heat treatment, respectively. After hydrolysis with trifluoroacetic acid and subsequent HPAE chromatography, the elicitor preparation contained galacturonic acid, the monosaccharide constituent of pectate. OGAs were isolated from this crude elicitor preparation by HPAEC and tested for their biological activity. While small OGAs were unable to induce an oxidative burst, the elicitor activity in cell suspension cultures of the non-host plants tobacco and pepper increased with the degree of polymerization (DP). Maximal elicitor activity was observed for DPs exceeding 8. In contrast to the X. campestris pv. campestris wild type B100, the exbD2 mutant was unable to generate elicitor activity from plant cell wall material or from pectin. Conclusions: To our knowledge, this is the second report on a DAMP generated by bacterial ...
  • Zugangsstatus: Freier Zugang