• Medientyp: Sonstige Veröffentlichung; E-Artikel
  • Titel: Efficient multiscale modeling of heterogeneous materials using deep neural networks
  • Beteiligte: Aldakheel, Fadi [Verfasser:in]; Elsayed, Elsayed S. [Verfasser:in]; Zohdi, Tarek I. [Verfasser:in]; Wriggers, Peter [Verfasser:in]
  • Erschienen: Berlin; Heidelberg : Springer, 2023
  • Erschienen in: Computational Mechanics 72 (2023), Nr. 1 ; Computational Mechanics
  • Ausgabe: published Version
  • Sprache: Englisch
  • DOI: https://doi.org/10.15488/14138; https://doi.org/10.1007/s00466-023-02324-9
  • ISSN: 0178-7675
  • Schlagwörter: Convolutional neural networks ; Deep learning ; Computational micro-to-macro approach ; Heterogeneous materials
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Material modeling using modern numerical methods accelerates the design process and reduces the costs of developing new products. However, for multiscale modeling of heterogeneous materials, the well-established homogenization techniques remain computationally expensive for high accuracy levels. In this contribution, a machine learning approach, convolutional neural networks (CNNs), is proposed as a computationally efficient solution method that is capable of providing a high level of accuracy. In this work, the data-set used for the training process, as well as the numerical tests, consists of artificial/real microstructural images (“input”). Whereas, the output is the homogenized stress of a given representative volume element RVE . The model performance is demonstrated by means of examples and compared with traditional homogenization methods. As the examples illustrate, high accuracy in predicting the homogenized stresses, along with a significant reduction in the computation time, were achieved using the developed CNN model.
  • Zugangsstatus: Freier Zugang