• Medientyp: E-Artikel; Sonstige Veröffentlichung
  • Titel: Quantum Variational Optimization of Ramsey Interferometry and Atomic Clocks
  • Beteiligte: Kaubruegger, Raphael [VerfasserIn]; Vasilyev, Denis V. [VerfasserIn]; Schulte, Marius [VerfasserIn]; Hammerer, Klemens [VerfasserIn]; Zoller, Peter [VerfasserIn]
  • Erschienen: College Park, Md. : APS, 2021
  • Erschienen in: Physical Review X 11 (2021), Nr. 4 ; Physical Review X
  • Ausgabe: published Version
  • Sprache: Englisch
  • DOI: https://doi.org/10.15488/14200; https://doi.org/10.1103/physrevx.11.041045
  • Schlagwörter: Atomic clocks ; Interferometry ; Cost functions ; Optical lattices ; Bayesian networks
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: We discuss quantum variational optimization of Ramsey interferometry with ensembles of N entangled atoms, and its application to atomic clocks based on a Bayesian approach to phase estimation. We identify best input states and generalized measurements within a variational approximation for the corresponding entangling and decoding quantum circuits. These circuits are built from basic quantum operations available for the particular sensor platform, such as one-axis twisting, or finite range interactions. Optimization is defined relative to a cost function, which in the present study is the Bayesian mean squared error of the estimated phase for a given prior distribution; i.e., we optimize for a finite dynamic range of the interferometer. In analogous variational optimizations of optical atomic clocks, we use the Allan deviation for a given Ramsey interrogation time as the relevant cost function for the long-term instability. Remarkably, even low-depth quantum circuits yield excellent results that closely approach the fundamental quantum limits for optimal Ramsey interferometry and atomic clocks. The quantum metrological schemes identified here are readily applicable to atomic clocks based on optical lattices, tweezer arrays, or trapped ions. While in the present work variationally optimized circuits are found with classical simulations, optimization can also be performed "on"the (physical) quantum sensor, also in regimes not accessible to classical computations and in the presence of imperfections.
  • Zugangsstatus: Freier Zugang