• Medientyp: Sonstige Veröffentlichung; E-Artikel
  • Titel: High order sensitivity analysis of a mistuned blisk including intentional mistuning
  • Beteiligte: Pohle, Linus [VerfasserIn]; Tatzko, Sebastian [VerfasserIn]; Panning-von Scheidt, Lars [VerfasserIn]; Wallaschek, Jörg [VerfasserIn]
  • Erschienen: Warsaw : Polish Society of Theoretical and Allied Mechanics, 2017
  • Erschienen in: Journal of Theoretical and Applied Mechanics (Poland) 55 (2017), Nr. 1
  • Ausgabe: published Version
  • Sprache: Englisch
  • DOI: https://doi.org/10.15488/1946; https://doi.org/10.15632/jtam-pl.55.1.353
  • Schlagwörter: Normal distribution ; Intentional mistuning ; Turbine components ; Mistuning ; Manufacturing tolerances ; Taylor series approximation ; Probability distributions ; Material inhomogeneities ; Turbines ; Frequency response ; Turbine blades ; Monte Carlo methods ; Sensitivity analysis ; Frequency response functions ; Vibration amplitude ; Turbine blade ; Intelligent systems ; Turbomachine blades ; Finite element method
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Small deviations between turbine blades exist due to manufacturing tolerances or material inhomogeneities. This effect is called mistuning and usually causes increased vibration amplitudes and also a lower service life expectancy of bladed disks or so called blisks (bladed integrated disk). The major resulting problem is to estimate the maximum amplitude with respect to these deviations. Due to the probability distribution of these deviations, statistical methods are used to predict the maximum amplitude. State of the art is the Monte-Carlo simulation which is based on a high number of randomly re-arranged input parameters. The aim of this paper is to introduce a useful method to calculate the probability distribution of the maximum amplitude of a mistuned blisk with respect to the random input parameters. First, the applied reduction method is presented to initiate the sensitivity analysis. This reduction method enables the calculation of the frequency response function (FRF) of a Finite Element Model (FEM) in a reasonable calculation time. Based on the Taylor series approximation, the sensitivity of the vibration amplitude depending on normally distributed input parameters is calculated and therewith, it is possible to estimate the maximum amplitude. Calculating only a single frequency response function shows a good agreement with the results of over 1000 Monte-Carlo simulations.
  • Zugangsstatus: Freier Zugang