• Medientyp: Dissertation; Sonstige Veröffentlichung; E-Book; Elektronische Hochschulschrift
  • Titel: Compact, low-noise current drivers for quantum sensors with atom chips
  • Beteiligte: Popp, Manuel André [VerfasserIn]
  • Erschienen: Hannover : Institutionelles Repositorium der Leibniz Universität Hannover, 2018
  • Ausgabe: published Version
  • Sprache: Deutsch
  • DOI: https://doi.org/10.15488/3688
  • Schlagwörter: Atomchips ; current control ; atom chips ; Stromregelung ; Bose-Einstein condensate ; Bose-Einstein-Kondensat
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Quantum sensors based on atomic interferometry are becoming valued tools for precision measurements in various research areas such as metrology, Earth sciences and inertial sensors. However, the verification of their accuracy is linked to the resolution and thus the free-fall time of the interferometer, which can only be extended on Earth by levitation or other methods, which themselves usually result in a loss of accuracy. Especially in the field of basic research, space-based measurement apparatuses are therefore fascinating prospects to set new standards for fundamental tests and measurements in Earth observation. In space, it is possible to drop the measuring devices alongside their test objects as long as desired, which allows a considerable extension of interferometry time. An important prerequisite for interferometry on such long time scales is the minimization of propagation velocity and initial expansion, which can only be achieved with ultra-cold atomic ensembles such as a bose-einstein condensate (BEC). Therefore, the creation of such a BEC on a compact, space-based platform represents a central challenge for the feasibility of atom interferometers in space. An important step for the necessary adaptation of existing laboratory equipment to space platforms is the sounding rocket mission maius-1, which is to develop and test both technology and methodology for the use of quantum sensors in space. The core of the scientific payload of maius-1 is an ultra-compact cold atomic source, based on the atom chip technology, employed to generate BEC in magnetic traps. The precise magnetic field control with atomic chips, in an environment like that of a sounding rocket, requires specialized current drivers that combine ruggedness, compactness and excellent noise performance that is yet unattainable with commercial technology. This thesis presents design and characterization of a new generation of compact current drivers for this purpose. Based on a typical preparation of a BEC, core specifications for current ...
  • Zugangsstatus: Freier Zugang
  • Rechte-/Nutzungshinweise: Namensnennung (CC BY)