• Medientyp: E-Artikel; Sonstige Veröffentlichung
  • Titel: Analysis of pressure-strain and pressure gradient-scalar covariances in cloud-topped boundary layers: A large-eddy simulation study
  • Beteiligte: Heinze, Rieke [VerfasserIn]; Mironov, Dmitrii [VerfasserIn]; Raasch, Siegfried [VerfasserIn]
  • Erschienen: Hoboken, NJ : Blackwell Publishing Ltd, 2016
  • Erschienen in: Journal of Advances in Modeling Earth Systems 8 (2016), Nr. 1
  • Ausgabe: published Version
  • Sprache: Englisch
  • DOI: https://doi.org/10.15488/735; https://doi.org/10.1002/2015MS000508
  • ISSN: 1942-2466
  • Schlagwörter: pressure-scrambling terms ; Atmospheric thermodynamics ; Boundary layers ; Shear flow ; Reynolds number ; Cloud-topped boundary layer ; Boundary layer flow ; Uncertainty analysis ; Pressure gradient ; large-eddy simulation ; cloud-topped boundary layers ; second-order turbulence modeling ; Turbulence ; Reynolds equation ; Comparison of models ; parameterizations ; Budget control ; Buoyancy
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: A detailed analysis of the pressure-scrambling terms (i.e., the pressure-strain and pressure gradient-scalar covariances) in the Reynolds-stress and scalar-flux budgets for cloud-topped boundary layers (CTBLs) is performed using high-resolution large-eddy simulation (LES). Two CTBLs are simulated — one with trade wind shallow cumuli, and the other with nocturnal marine stratocumuli. The pressure-scrambling terms are decomposed into contributions due to turbulence-turbulence interactions, mean velocity shear, buoyancy, and Coriolis effects. Commonly used models of these contributions, including a simple linear model most often used in geophysical applications and a more sophisticated two-component-limit (TCL) nonlinear model, are tested against the LES data. The decomposition of the pressure-scrambling terms shows that the turbulence-turbulence and buoyancy contributions are most significant for cloud-topped boundary layers. The Coriolis contribution is negligible. The shear contribution is generally of minor importance inside the cloudy layers, but it is the leading-order contribution near the surface. A comparison of models of the pressure-scrambling terms with the LES data suggests that the more complex TCL model is superior to the simple linear model only for a few contributions. The linear model is able to reproduce the principal features of the pressure-scrambling terms reasonably well. It can be applied in the second-order turbulence modeling of cloud-topped boundary layer flows, provided some uncertainties are tolerated. ; Deutscher Wetterdienst ; European Commission/COST Action ES0905
  • Zugangsstatus: Freier Zugang
  • Rechte-/Nutzungshinweise: Namensnennung - Nicht-kommerziell - Keine Bearbeitung (CC BY-NC-ND)