• Medientyp: Sonstige Veröffentlichung; Bericht; E-Book
  • Titel: Minimax nonparametric hypothesis testing for small type I errors
  • Beteiligte: Ingster, Yuri I. [Verfasser:in]; Suslina, Irina [Verfasser:in]
  • Erschienen: Weierstrass Institute for Applied Analysis and Stochastics publication server, 2003
  • Sprache: Englisch
  • DOI: https://doi.org/10.20347/WIAS.PREPRINT.867
  • Schlagwörter: 62G10 ; Minimax hypothesis testing -- nonparametric signal detection -- adaptive hypothesis testing -- intermediate efficiency ; article ; 62G20
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Under the white Gaussian noise model with the noise level ε → 0, we study minimax nonparametric hypothesis testing problem H0 : ƒ = 0 on unknown function ƒ ∈ L2(0,1). We consider alternative sets that are determined a regularity constraint in the Sobolev norm and we suppose that signals are bounded away from the null either in L2-norm or in L∞-norm. Analogous problems are considered in the sequence space. If type I error probability α ∈ (0,1) is fixed, then these problems were studied in book [13]. In this paper we consider the case α → 0. We obtain either sharp distinguishability conditions or sharp asymptotics of the minimax type II error probability in the problem. We show that if α is "not too small", then there exists natural extension of results [13], whenever if α is "very small", then we obtain classical asymptotics and distinguishability conditions for small α. Adaptive problems are studied as well.