• Medientyp: E-Book; Bericht; Sonstige Veröffentlichung
  • Titel: Generalized Scharfetter--Gummel schemes for electro-thermal transport in degenerate semiconductors using the Kelvin formula for the Seebeck coefficient
  • Beteiligte: Kantner, Markus [VerfasserIn]
  • Erschienen: Weierstrass Institute for Applied Analysis and Stochastics publication server, 2019
  • Sprache: Englisch
  • DOI: https://doi.org/10.20347/WIAS.PREPRINT.2605
  • Schlagwörter: 35K57 ; Finite volume Scharfetter--Gummel method -- semiconductor device simulation -- electro-thermal transport -- non-isothermal drift-diffusion system -- degenerate semiconductors -- Fermi--Dirac statistics -- Seebeck coefficient ; 80A20 ; 35Q79 ; 65N08 ; article
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Many challenges faced in today's semiconductor devices are related to self-heating phenomena. The optimization of device designs can be assisted by numerical simulations using the non-isothermal drift-diffusion system, where the magnitude of the thermoelectric cross effects is controlled by the Seebeck coefficient. We show that the model equations take a remarkably simple form when assuming the so-called Kelvin formula for the Seebeck coefficient. The corresponding heat generation rate involves exactly the three classically known self-heating effects, namely Joule, recombination and Thomson--Peltier heating, without any further (transient) contributions. Moreover, the thermal driving force in the electrical current density expressions can be entirely absorbed in the (nonlinear) diffusion coefficient via a generalized Einstein relation. The efficient numerical simulation relies on an accurate and robust discretization technique for the fluxes (finite volume Scharfetter--Gummel method), which allows to cope with the typically stiff solutions of the semiconductor device equations. We derive two non-isothermal generalizations of the Scharfetter--Gummel scheme for degenerate semiconductors (Fermi--Dirac statistics) obeying the Kelvin formula. The approaches differ in the treatment of degeneration effects: The first is based on an approximation of the discrete generalized Einstein relation implying a specifically modified thermal voltage, whereas the second scheme follows the conventionally used approach employing a modified electric field. We present a detailed analysis and comparison of both schemes, indicating a superior performance of the modified thermal voltage scheme.