• Medientyp: Sonstige Veröffentlichung; E-Artikel
  • Titel: Closed-Loop Optimal Experiment Design: Solution via Moment Extension
  • Beteiligte: Hildebrand, Roland [Verfasser:in]; Solari, Gabriel Elias [Verfasser:in]; Gevers, Michel [Verfasser:in]
  • Erschienen: Weierstrass Institute for Applied Analysis and Stochastics publication server, 2015
  • Sprache: Englisch
  • DOI: https://doi.org/10.1109/tac.2015.2400662
  • Schlagwörter: Optimal experiment design -- Closed-loop identification -- Convex programming -- Power spectral density -- Moment method ; article
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: We consider optimal experiment design for parametric prediction error system identification of linear time-invariant multiple-input multiple-output systems in closed-loop when the true system is in the model set. The optimization is performed jointly over the controller and the spectrum of the external excitation, which can be reparametrized as a joint spectral density matrix. The optimal solution consists of first computing a finite set of generalized moments of this spectrum as the solution of a semi-definite program. A second step then consists of constructing a spectrum that matches this finite set of optimal moments and satisfies some constraints due to the particular closed-loop nature of the optimization problem. This problem can be seen as a moment extension problem under constraints. Here we first show that the so-called central extension always satisfies these constraints, leading to a constructive procedure for the optimal controller and excitation spectrum. We then show that one can construct a broader set of parametrized optimal solutions that also satisfy the constraints; the additional degrees of freedom can then be used to achieve additional objectives.