Anmerkungen:
Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
Beschreibung:
We consider the minimization of a continuous function over the intersection of a regular cone with an affine set via a new class of adaptive first- and second-order optimization methods, building on the Hessian-barrier techniques introduced in [Bomze, Mertikopoulos, Schachinger, and Staudigl, Hessian barrier algorithms for linearly constrained optimization problems, SIAM Journal on Optimization, 2019]. Our approach is based on a potential-reduction mechanism and attains a suitably defined class of approximate first- or second-order KKT points with the optimal worst-case iteration complexity O(ε−2) (first-order) and O(ε−3/2) (second-order), respectively. A key feature of our methodology is the use of self-concordant barrier functions to construct strictly feasible iterates via a disciplined decomposition approach and without sacrificing on the iteration complexity of the method. To the best of our knowledge, this work is the first which achieves these worst-case complexity bounds under such weak conditions for general conic constrained optimization problems.