• Medientyp: Bericht; E-Book
  • Titel: Non-standard errors
  • Beteiligte: Menkveld, Albert J. [Verfasser:in]; Dreber, Anna [Verfasser:in]; Holzmeister, Felix [Verfasser:in]; Huber, Jürgen [Verfasser:in]; Johannesson, Magnus [Verfasser:in]; Kirchler, Michael [Verfasser:in]; Neusüss, Sebastian [Verfasser:in]; Razen, Michael [Verfasser:in]; Weitzel, Utz [Verfasser:in]
  • Erschienen: Frankfurt a. M.: Leibniz Institute for Financial Research SAFE, 2021
  • Sprache: Englisch
  • DOI: https://doi.org/10.2139/ssrn.3961574
  • Schlagwörter: C12 ; non-standard errors ; multi-analyst approach ; liquidity ; G1 ; C18 ; G14
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: In statistics, samples are drawn from a population in a data-generating process (DGP). Standard errors measure the uncertainty in sample estimates of population parameters. In science, evidence is generated to test hypotheses in an evidence-generating process (EGP). We claim that EGP variation across researchers adds uncertainty: non-standard errors. To study them, we let 164 teams test six hypotheses on the same sample. We find that non-standard errors are sizeable, on par with standard errors. Their size (i) co-varies only weakly with team merits, reproducibility, or peer rating, (ii) declines significantly after peer-feedback, and (iii) is underestimated by participants.
  • Zugangsstatus: Freier Zugang