• Medientyp: E-Artikel
  • Titel: Dynamic cellular manufacturing system considering machine failure and workload balance
  • Beteiligte: Rabbani, Masoud [Verfasser:in]; Farrokhi-Asl, Hamed [Verfasser:in]; Ravanbakhsh, Mohammad [Verfasser:in]
  • Erschienen: Heidelberg: Springer, 2019
  • Sprache: Englisch
  • DOI: https://doi.org/10.1007/s40092-018-0261-y
  • ISSN: 2251-712X
  • Schlagwörter: Multi-objective optimization ; Alternative processing routs ; Dynamic cellular manufacturing system ; Labor utilization ; Machine failure
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Machines are a key element in the production system and their failure causes irreparable effects in terms of cost and time. In this paper, a new multi-objective mathematical model for dynamic cellular manufacturing system (DCMS) is provided with consideration of machine reliability and alternative process routes. In this dynamic model, we attempt to resolve the problem of integrated family (part/machine cell) formation as well as the operators' assignment to the cells. The first objective minimizes the costs associated with the DCMS. The second objective optimizes the labor utilization and, finally, a minimum value of the variance of workload between different cells is obtained by the third objective function. Due to the NP-hard nature of the cellular manufacturing problem, the problem is initially validated by the GAMS software in small-sized problems, and then the model is solved by two well-known meta-heuristic methods including non-dominated sorting genetic algorithm and multi-objective particle swarm optimization in large-scaled problems. Finally, the results of the two algorithms are compared with respect to five different comparison metrics.
  • Zugangsstatus: Freier Zugang
  • Rechte-/Nutzungshinweise: Namensnennung (CC BY)