• Medientyp: E-Artikel
  • Titel: Global convergence of model function based Bregman proximal minimization algorithms
  • Beteiligte: Mukkamala, Mahesh Chandra [Verfasser:in]; Fadili, Jalal [Verfasser:in]; Ochs, Peter [Verfasser:in]
  • Erschienen: New York, NY: Springer US, 2021
  • Sprache: Englisch
  • DOI: https://doi.org/10.1007/s10898-021-01114-y
  • ISSN: 1573-2916
  • Schlagwörter: Bregman proximal minimization algorithms ; Bregman distance ; Model function framework ; Composite minimization ; Kurdyka–Łojasiewicz property ; Global convergence
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Lipschitz continuity of the gradient mapping of a continuously differentiable function plays a crucial role in designing various optimization algorithms. However, many functions arising in practical applications such as low rank matrix factorization or deep neural network problems do not have a Lipschitz continuous gradient. This led to the development of a generalized notion known as the L-smad property, which is based on generalized proximity measures called Bregman distances. However, the L-smad property cannot handle nonsmooth functions, for example, simple nonsmooth functions like |x4-1|\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\vert x^4-1 \vert $$\end{document} and also many practical composite problems are out of scope. We fix this issue by proposing the MAP property, which generalizes the L-smad property and is also valid for a large class of structured nonconvex nonsmooth composite problems. Based on the proposed MAP property, we propose a globally convergent algorithm called Model BPG, that unifies several existing algorithms. The convergence analysis is based on a new Lyapunov function. We also numerically illustrate the superior performance of Model BPG on standard phase retrieval problems and Poisson linear inverse problems, when compared to a state of the art optimization method that is valid for generic nonconvex nonsmooth optimization problems.
  • Zugangsstatus: Freier Zugang
  • Rechte-/Nutzungshinweise: Namensnennung (CC BY) Namensnennung (CC BY)