• Medientyp: E-Artikel
  • Titel: New possibilities for concrete analysis 4.0 with the Laser-Induced Breakdown Spectroscopy (LIBS)
  • Beteiligte: Gottlieb, Cassian [VerfasserIn]; Bohling, Christian [VerfasserIn]; Wilsch, Gerd [VerfasserIn]
  • Erschienen: BAM-Publica - Publikationsserver der Bundesanstalt für Materialforschung und -prüfung (BAM), 2020
  • Sprache: Englisch
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: In civil engineering the damage assessment of concrete infrastructures is an important task to monitor and ensure the estimated life-time. The aging of concrete is caused by different damage processes like the chloride induced pitting corrosion of the reinforcement. The penetration depth and the concentration of harmful species are crucial factors in the damage assessment. As a highly cost and time-consuming standard procedure, the analysis of concrete drill cores or drilling by wet-chemistry is widely used. This method provides element concentration to the total mass as aggregates and binder are homogenized. In order to provide a method that is capable to detect the element concentration regarding the cement content only, the laser-induced breakdown spectroscopy (LIBS) will be presented. The LIBS method uses a focused pulsed laser on the sample surface to ablate material. The high-power density and the laser-material interaction causes a laser-induced plasma that emits elemental and molecular line emission due to energy transition of the excited species in the plasma during the cooling phase. As each element provides element-specific line emission, it is in principle possible to detect any element on the periodic table (spectroscopic fingerprint) with one laser shot. In combination with a translation stage the sample under investigation can be spatially resolved using a scan raster with a resolution up to 100 µm (element mapping). Due to the high spatial resolution, the element distribution and the heterogeneity of the concrete can be evaluated. By using chemometrics the non-relevant aggregates can be excluded from the data set and the element concentration can be quantified and referred to a specific solid phase like the binding matrix (cement) only. In order to analyze transport processes like diffusion and migration the twodimensional element distributions can provide deep insight into the transport through the pore space and local enrichments of elements. As LIBS is a multi-elemental method it is also ...
  • Zugangsstatus: Freier Zugang