• Medientyp: Sonstige Veröffentlichung; E-Artikel; Elektronischer Konferenzbericht
  • Titel: Bisimulation by Partitioning Is Ω((m+n)log n)
  • Beteiligte: Groote, Jan Friso [Verfasser:in]; Martens, Jan [Verfasser:in]; de Vink, Erik [Verfasser:in]
  • Erschienen: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2021
  • Sprache: Englisch
  • DOI: https://doi.org/10.4230/LIPIcs.CONCUR.2021.31
  • Schlagwörter: partition refinement ; labeled transition system ; lowerbound ; Bisimilarity
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: An asymptotic lowerbound of Ω((m+n)log n) is established for partition refinement algorithms that decide bisimilarity on labeled transition systems. The lowerbound is obtained by subsequently analysing two families of deterministic transition systems - one with a growing action set and another with a fixed action set. For deterministic transition systems with a one-letter action set, bisimilarity can be decided with fundamentally different techniques than partition refinement. In particular, Paige, Tarjan, and Bonic give a linear algorithm for this specific situation. We show, exploiting the concept of an oracle, that the approach of Paige, Tarjan, and Bonic is not of help to develop a generic algorithm for deciding bisimilarity on labeled transition systems that is faster than the established lowerbound of Ω((m+n)log n).
  • Zugangsstatus: Freier Zugang