• Medientyp: Sonstige Veröffentlichung; E-Artikel; Elektronischer Konferenzbericht
  • Titel: Algorithms for Computing Closest Points for Segments
  • Beteiligte: Wang, Haitao [Verfasser:in]
  • Erschienen: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2024
  • Sprache: Englisch
  • DOI: https://doi.org/10.4230/LIPIcs.STACS.2024.58
  • Schlagwörter: Segment dragging queries ; Algebraic decision tree model ; Closest points ; Hopcroft’s problem ; Voronoi diagrams
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Given a set P of n points and a set S of n segments in the plane, we consider the problem of computing for each segment of S its closest point in P. The previously best algorithm solves the problem in n^{4/3}2^{O(log^*n)} time [Bespamyatnikh, 2003] and a lower bound (under a somewhat restricted model) Ω(n^{4/3}) has also been proved. In this paper, we present an O(n^{4/3}) time algorithm and thus solve the problem optimally (under the restricted model). In addition, we also present data structures for solving the online version of the problem, i.e., given a query segment (or a line as a special case), find its closest point in P. Our new results improve the previous work.
  • Zugangsstatus: Freier Zugang