• Medientyp: Elektronischer Konferenzbericht; E-Artikel; Sonstige Veröffentlichung
  • Titel: Efficient Average-Case Population Recovery in the Presence of Insertions and Deletions
  • Beteiligte: Ban, Frank [VerfasserIn]; Chen, Xi [VerfasserIn]; Servedio, Rocco A. [VerfasserIn]; Sinha, Sandip [VerfasserIn]
  • Erschienen: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2019
  • Sprache: Englisch
  • DOI: https://doi.org/10.4230/LIPIcs.APPROX-RANDOM.2019.44
  • Schlagwörter: population recovery ; deletion channel ; trace reconstruction
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: A number of recent works have considered the trace reconstruction problem, in which an unknown source string x in {0,1}^n is transmitted through a probabilistic channel which may randomly delete coordinates or insert random bits, resulting in a trace of x. The goal is to reconstruct the original string x from independent traces of x. While the asymptotically best algorithms known for worst-case strings use exp(O(n^{1/3})) traces [De et al., 2017; Fedor Nazarov and Yuval Peres, 2017], several highly efficient algorithms are known [Yuval Peres and Alex Zhai, 2017; Nina Holden et al., 2018] for the average-case version of the problem, in which the source string x is chosen uniformly at random from {0,1}^n. In this paper we consider a generalization of the above-described average-case trace reconstruction problem, which we call average-case population recovery in the presence of insertions and deletions. In this problem, rather than a single unknown source string there is an unknown distribution over s unknown source strings x^1,.,x^s in {0,1}^n, and each sample given to the algorithm is independently generated by drawing some x^i from this distribution and returning an independent trace of x^i. Building on the results of [Yuval Peres and Alex Zhai, 2017] and [Nina Holden et al., 2018], we give an efficient algorithm for the average-case population recovery problem in the presence of insertions and deletions. For any support size 1 <= s <= exp(Theta(n^{1/3})), for a 1-o(1) fraction of all s-element support sets {x^1,.,x^s} subset {0,1}^n, for every distribution D supported on {x^1,.,x^s}, our algorithm can efficiently recover D up to total variation distance at most epsilon with high probability, given access to independent traces of independent draws from D. The running time of our algorithm is poly(n,s,1/epsilon) and its sample complexity is poly (s,1/epsilon,exp(log^{1/3} n)). This polynomial dependence on the support size s is in sharp contrast with the worst-case version of the problem (when x^1,.,x^s may ...
  • Zugangsstatus: Freier Zugang