• Medientyp: Sonstige Veröffentlichung; E-Artikel; Elektronischer Konferenzbericht
  • Titel: How to Play in Infinite MDPs (Invited Talk)
  • Beteiligte: Kiefer, Stefan [Verfasser:in]; Mayr, Richard [Verfasser:in]; Shirmohammadi, Mahsa [Verfasser:in]; Totzke, Patrick [Verfasser:in]; Wojtczak, Dominik [Verfasser:in]
  • Erschienen: Schloss Dagstuhl – Leibniz-Zentrum für Informatik, 2020
  • Sprache: Englisch
  • DOI: https://doi.org/10.4230/LIPIcs.ICALP.2020.3
  • Schlagwörter: Markov decision processes
  • Entstehung:
  • Anmerkungen: Diese Datenquelle enthält auch Bestandsnachweise, die nicht zu einem Volltext führen.
  • Beschreibung: Markov decision processes (MDPs) are a standard model for dynamic systems that exhibit both stochastic and nondeterministic behavior. For MDPs with finite state space it is known that for a wide range of objectives there exist optimal strategies that are memoryless and deterministic. In contrast, if the state space is infinite, optimal strategies may not exist, and optimal or ε-optimal strategies may require (possibly infinite) memory. In this paper we consider qualitative objectives: reachability, safety, (co-)Büchi, and other parity objectives. We aim at giving an introduction to a collection of techniques that allow for the construction of strategies with little or no memory in countably infinite MDPs.
  • Zugangsstatus: Freier Zugang